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Introduction: Xeroderma pigmentosum (XP) is a rare, autosomal recessive disorder
characterized by extreme sensitivity to UV-induced DNA damage, resulting in
symptoms such as severe sunburn, freckles, dry skin, premature skin aging, and,
occasionally, neurological symptoms.

Case Report: The study focuses on a 6-year-old girl with XP symptoms since age three.
Genotyping was performed to identify the responsible mutation, followed by molecular
modeling to predict the structural consequences of the amino acid substitution.
Results: The identified variant is a novel homozygous frameshift mutation XPC:
c.2213 2216del (p.Thr738Argfs*28) in exon 12, corresponding to genomic coordinates
(hg19/GRCh37) chr3:14190347 CTCTG>C based on the canonical transcript
NM _004628.5. This variant is predicted to cause XP. Homology modeling reveals that
this mutation deletes a critical region at the extreme COOH terminus of the XPC protein,
which is crucial for its interaction with TFIIH and CETN2. While the mutant protein
can still interact with DNA, it loses its ability to interact with TFIIH and CETN2,
leading to loss of protein function.

Conclusions: This study expands the spectrum of mutations observed in the XPC gene
by identifying a new pathogenic mutation. The results of this study highlight the
importance of medical and genetic counseling in protecting future generations against
genetic disease.

Case Report

Copyright © 2025 Yadegari et al. Published by Breast Cancer Research Center, ACECR. This work is licensed under a Creative
Commons Attribution - NonCommercial 4.0 International License (https.//creativecommons.org/licenses/by -nc/4.0/) non-commercial

uses are permitted, provided the original work is properly cited.

INTRODUCTION

Xeroderma pigmentosum (XP) is a rare genetic
disorder inherited in an autosomal recessive manner.
It is characterized by extreme sensitivity to sunlight
and other light sources, leading to redness and
sunburn on sun-exposed areas from birth (50%),
freckles before age 2, skin hyper- and
hypopigmentations, loss of vision, and damage to the
eyelids, lips, and tip of the tongue. Neurological
deficits such as dysphagia, sensory neural hearing
loss, ataxia, intellectual disability, muscle weakness,

and premature death have been seen in 25% of
patients with XP. They are 10000 times more likely to
develop skin cancers, including basal cell carcinoma,
squamous cell carcinoma, and melanoma, and 2000
times more likely to develop ocular cancers. These
cancers are typically present before age 10 [1-6]. This
disease results from a faulty nucleotide excision repair
(NER) system, which corrects a wide range of DNA
lesions, including helix-distorting DNA damage and
bulky adducts. The NER pathway employs two
mechanisms to remove DNA lesions: transcription-
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Table 1. Comparison of clinical features of syndromes associated with NER deficiencies.
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coupled repair (TC-NER) and global genome repair
(GG-NER). TC-NER specifically detects and
eliminates damage from the transcribed strand of
active genes, while GG-NER repairs DNA lesions
throughout the entire genome [7-9]. Except for the
mode of DNA damage recognition, these mechanisms
are almost identical. In TC-NER, transcription-
blocking DNA lesions are identified by Cockayne
Syndrome B (CSB) and Cockayne Syndrome A
(CSA) proteins, while in GG-NER, DNA damage is
recognized by the XPC protein complexed with the
human homolog of Rad23-B (hHR23B) and CETN2.
XP is caused by mutations in one of several genes
involved in the nucleotide excision repair (NER)
pathway, including DDB2 (XP-E), ERCCI1, ERCC2
(XP-D), ERCC3 (XP-G), ERCC4 (XP-F), ERCCS
(XP-B), XPC, XPA, and POLH (XP-V). While most
groups exhibit nucleotide excision repair (NER)
deficiency and can present with or without
neurological abnormalities, the variant form (XP-V,
caused by POLH mutations) typically shows milder
features, limited to cutaneous photosensitivity and a
predisposition to skin cancer. In addition to the
heterogeneity within XP itself, defects in several of
the same NER-related genes can give rise to other
overlapping syndromes with XP-like features. A
detailed comparison of clinical features across XP
complementation groups and related syndromes is
described below and summarized in Table 1.

Cockayne syndrome (CS), cerebro-oculo-facio-
skeletal (COFS) syndrome, trichothiodystrophy
(TTD), and UV-sensitive syndrome are diseases with
mutations in some of the same genes as those involved
in XP [10, 11]. De Sanctis—Cacchione syndrome
(DSC) represents the most severe form of XP

characterized by manifestations such as dwarfism,
mental disabilities, and immature sexual development
[12-14]. The severity of this syndrome depends on the
extent of DNA repair damage [15, 16]. Mutations in
the CS4 and CSB genes cause CS. This disease is
characterized by skin photosensitivity, but unlike XP,
it does not increase the susceptibility to skin cancer.
Individuals with CS may experience cachectic
dwarfism and progressive neurological abnormalities,

including microcephaly, retinal atrophy,
sensorineural deafness, and difficulty walking and
feeding [17-19]. Another disorder,

trichothiodystrophy (TTD), a TC-NER-specific
disorder, is caused by mutations in the XPB, XPD,
TTDA, and TTDNI genes. TTD shares many
symptoms with Cockayne syndrome but presents
additional features such as sulfur-deficient brittle hair,
nails, and scaly skin [20-23]. Mutations in the XPB
and XPD genes, subunits of the TFIIH complex, can
result in XP, TTD, or a combination of both (XP-CS)
[22].

In contrast to XP, individuals with CS and TTD do not
have an increased risk of skin cancer or pigmentary
abnormalities. Syndromes associated with NER
deficiency exhibit similar clinical signs, including
photosensitivity and mental problems, making it
challenging to differentiate between them. In addition
to NER-related disorders, other conditions may
present with abnormal pigmentation that can mimic
XP or related syndromes. Peutz-Jeghers syndrome,
Leopard syndrome, and Carney complex are
autosomal dominant lentiginoses that are not directly
associated with sun exposure. However, they exhibit
a common abnormal pigmentation feature, similar to
conditions such as XP, CS, DCS, and the XP/CS
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complex [24]. This study presents the clinical and
genetic features of a 6-year-old Iraqi girl who
exhibited XP-like features.

CASE REPORT

Clinical History

A 6-year-old girl with clinical features indicative of
XP was referred to the Alwarith Cancer Institute for
genetic counseling. These features included extreme
sensitivity to sunlight, freckles in sun-exposed areas,
dry skin, and photophobia. After obtaining written
informed consent from the proband's parents,
pedigree information,
affected family members, associated diseases, and
family history, was collected through interviews with
both parents and physical examination of the proband
and other children in the family (Figure 1). All data
were handled confidentially in accordance with
institutional guidelines.

Whole exome sequencing (WES)

DNA was extracted from peripheral blood leukocytes
using the Blood Mini Kit (Zista Gene, Iran) according
to the manufacturer's instructions. The DNA obtained
from the proband underwent whole-exome
sequencing (WES) on the BGISEQ-500 system, using
100-bp paired-end reads. After quality control (QC),
sequence reads were aligned to the GRCh37/hgl9
build of the human reference genome using BWA-
MEM. Variant filtering was then performed to

including consanguinity,

[| Xeroserma Pmertosum

identify sequence variants associated with the
proband’s phenotype, focusing on allele frequency
and predicted pathogenicity, particularly in genes
associated with dermatological or DNA repair
disorders.

Homology modeling

Currently, no experimentally determined 3D crystal
structure of the human XPC protein is available. To
address this, we employed homology modeling, a
computational approach that predicts a protein's 3D
structure using the known structure of a homologous
protein as a template. For this purpose, we used the
yeast Rad4—Rad23 complex bound to DNA (PDB ID:
2QSH) (Min & Pavletich, 2007), as yeast Rad4 shares
approximately 40% sequence similarity with human
XPC. This structure served as a template to construct
a model of the human XPC-RAD23B protein bound
to DNA using MODELLER version 9.15.

RESULTS

Clinical Findings and Genetic Study

We present the case of a six-year-old girl, born to a
consanguineous marriage, experiencing severe skin
sensitivity to sunlight. This condition has led to burns,
dry skin, and multiple freckles on her face, hands,
arms, legs, abdomen, and upper chest. The cutaneous
manifestations observed in our patient, including
freckling, poikiloderma, and actinic damage, are
similar to some of the representative clinical images
of XP available on the DermIS — Dermatology Online

08 Q9 °

Figure 1. The pedigree information of this family.
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Figure 2. Identification of a novel homozygous frameshift deletion (c.2213 2216del, p.Thr738Argfs*28, NM_004628.5, hg19:

chr3:14190347 CTCTG>C) using whole exome sequencing.

Atlas (Diepgen TL, Yihune G et al., published online
at:

https://www.dermis.net/dermisroot/en/40662/diagnos
e.htm). These symptoms have been present since she
was three years old. The child has also exhibited
ocular symptoms such as photophobia and red eyelids.
These characteristics suggestive  of
Xeroderma Pigmentosum, an autosomal recessive
disorder. However, no signs of skin malignancy and
neurological involvement, including microcephaly,
retinal atrophy, sensorineural deafness, and walking
and feeding difficulties, have been observed. WES
was performed on the proband's genomic DNA to
elucidate the genetic basis of these symptoms further.
A novel homozygous frameshift deletion in exon 12
of the XPC gene (c.2213 2216del,
p.-Thr738Argfs*28, NM_004628.5, hg19:
chr3:14190347 CTCTG>C) was detected (Figure 2).
This deletion changes threonine to arginine at codon
738, creating a premature stop codon and resulting in
truncation of the translated protein at codon 765

were all

(p-Thr738ArgfsX28).

Homology modeling

The carboxy-terminal domain of the XPC has been
shown to have critical interactions with damaged
DNA (residues 607-742), RAD23B (residues 496-
734), CETN2 (residues 847-866), and TFIIH
(residues 816-940) [25-29]. CETN2 and RAD23B
have been reported to enhance the stability and DNA
damage-recognition sensitivity of XPC [26, 30].
According to the 3D structural model constructed in
this study, the truncated protein (p.Thr738Argfs*28)
lacks the essential residues required for interaction
with CETN2 (residues 847-866) and TFIIH (residues
816-940). However, it retains its ability to interact
with DNA and RAD23B, as illustrated in Figure 3.

CONCLUSIONS AND DISCUSSION

XP is a hereditary disease with varying incidence
across regions, affecting approximately 1 in 100,000
individuals in the United States and Europe, 1 in
20,000 to 100,000 in Japan, and 1 in 10,000 to 50,000
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Figure 3. Structural model of the putative XPC in complex with RAD23B and DNA.

in North Africa and the Middle East. This condition
arises from mutations in the NER pathway, including
XPA-XPG and XPV [31, 32]. In North Africa,
Europe, and the Middle East, mutations in the XPC
gene are the most commonly observed cause of XP
[33]. Conversely, in Japan, XPA mutations are the
predominant cause of the disease [31]. Various types
of mutations have been identified in the XPC gene,
although most of them are frameshift or nonsense
mutations. For example, a Chinese XP-C patient was
found to carry two novel compound heterozygous
XPC variants and also presented with an ovarian
teratoma, illustrating that XP-C can sometimes affect
internal organs [34]. In another report, a 19-year-old
XP patient harbored a 13-bp deletion and a splice-site
mutation in XPC [35]. Additionally, a consanguineous
Pakistani family was found to carry a novel protein-
truncating mutation (c.291dupT; p.Asp98*) in XPC,
resulting in a truncated protein and confirming the
autosomal recessive inheritance pattern [36]. A
homozygous missense  mutation (c.919C>T;
p.-Arg307Trp) was reported in a family with multiple
melanoma cases, and the MCIR p.I155T variant

56

appeared to modify the severity of the disease [37].
Additionally, a 4-year-old Korean boy with an XPC
splice site mutation presented with typical cutaneous
XP manifestations as well as autistic features and
metabolic abnormalities, including hypoglycinemia
[38].

In this case study, we present a 6-year-old girl who
developed pigmented lesions on sun-exposed areas of
her skin at age 3. Analysis revealed a homozygous
frameshift mutation in exon 12 of the XPC gene
(c.2213 2216del, p.Thr738Argfs*28, NM_004628.5,
hg19: chr3:14190347 CTCTG>C)

Based on the clinical and molecular findings, XP was
diagnosed in this case. The homozygous deletion
variant (Thr738Argfs*28) found in our case created a
premature termination codon (PTC) that reduced the
length of the XPC protein from 940 to 765 residues.
mRNA transcripts containing a PTC resulting from
DNA mutations or RNA processing errors are
typically recognized and degraded via nonsense-
mediated mRNA decay (NMD) [39]. Generally,
mRNA transcripts with premature termination codons
within 50-55 nucleotides upstream of an exon-exon
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junction are subject to degradation by NMD [40, 41].
However, exceptions to this rule have been reported
[42], suggesting that a larger proportion of transcripts
with premature termination codons may potentially
undergo degradation via NMD [43]. Based on the 50—
55-nucleotide rule, it is likely that NMD would target
and remove the mRNA containing the
Thr738Argfs*28 mutation, leading to loss of gene
function. If no NMD occurs, it produces a truncated
protein at the extreme C-terminus of XPC
(Thr738Argfs*28). The functional consequences of
such truncation mutations depend on the extent of
protein loss. As illustrated in Figure 3, the truncation
mutation (Thr738Argfs*28) identified in this study
does not appear to affect the interaction between XPC
and DNA or between XPC and HR23B. However, this
specific mutation disrupts XPC's binding to CETN2
and TFIIH. Previous studies have demonstrated that
human cells lacking XPC-TFIIH interaction exhibit a
complete deficiency in NER [29]. Therefore, if the
XPC protein carrying this mutation
(Thr738 Argfs*28) had been expressed, it would likely
be non-functional.

Genetic testing plays a key role in high-risk
populations, especially in regions with frequent
consanguineous marriages. Early identification of
pathogenic XPC variants can help families make
informed reproductive decisions and implement
preventive measures, thereby reducing the risk of
affected children in future generations.

The diagnosis can be made before birth by chorionic
villus sampling (CVS) and amniocentesis, to identify
related mutations. While there is no cure for XP after
birth, adopting sun protection measures can reduce
skin and eye problems associated with XP.
Photoprotection actions, including sun-protective
clothing, sunglasses, face shields, staying in the
shade, and minimizing outdoor activities during
midday, can effectively reduce skin damage caused by
ultraviolet radiation. Topical retinoids and vitamin D
supplements may also help reduce problems
associated with XP [44].To facilitate education on sun
protection methods, we have compiled a catalog of
informative materials in both English and Arabic,
offering  parents quick and easy-to-follow
instructions. The English version of these instructions,

Yadegari et al.

in the form of a brochure complete with photos and
detailed descriptions of recommendations, is attached
to this study as supplementary material (Brochure S1).
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